Head's Up! These forums are read-only. All users and content have migrated. Please join us at community.neo4j.com.
As with most technologies, there are few different approaches to what makes up the key components of a graph database. One such approach is the property graph model, where data is organized as nodes, relationships, and properties (data stored on the nodes or relationships).
We will cover this model in more detail in the Data Modeling section of these guides, but for now, we will briefly define the components that make up the property graph model.
Nodes are the entities in the graph. They can hold any number of attributes (key-value pairs) called properties. Nodes can be tagged with labels, representing their different roles in your domain. Node labels may also serve to attach metadata (such as index or constraint information) to certain nodes.
Relationships provide directed, named, semantically-relevant connections between two node entities (e.g. Employee WORKS_FOR Company). A relationship always has a direction, a type, a start node, and an end node. Like nodes, relationships can also have properties. In most cases, relationships have quantitative properties, such as weights, costs, distances, ratings, time intervals, or strengths. Due to the efficient way relationships are stored, two nodes can share any number or type of relationships without sacrificing performance. Although they are stored in a specific direction, relationships can always be navigated efficiently in either direction.
Building blocks of the property graph model (click to zoom)